Moving average stochastic volatility models with application to inflation forecast
نویسنده
چکیده
We introduce a new class of models that has both stochastic volatility and moving average errors, where the conditional mean has a state space representation. Having a moving average component, however, means that the errors in the measurement equation are no longer serially independent, and estimation becomes more difficult. We develop a posterior simulator that builds upon recent advances in precisionbased algorithms for estimating these new models. In an empirical application involving US inflation we find that these moving average stochastic volatility models provide better in-sample fitness and out-ofsample forecast performance than the standard variants with only stochastic volatility. © 2013 Elsevier B.V. All rights reserved.
منابع مشابه
Why Has U.S. Inflation Become Harder to Forecast?
We examine whether the U.S. rate of price inflation has become harder to forecast and, to the extent that it has, what changes in the inflation process have made it so. The main finding is that the univariate inflation process is well described by an unobserved component trend-cycle model with stochastic volatility or, equivalently, an integrated moving average process with time-varying paramet...
متن کاملLong memory modelling of inflation with stochastic variance and structural breaks
We investigate changes in the time series characteristics of postwar U.S. inflation. In a model-based analysis the conditional mean of inflation is specified by a long memory autoregressive fractionally integrated moving average process and the conditional variance is modelled by a stochastic volatility process. We develop a Monte Carlo maximum likelihood method to obtain efficient estimates of...
متن کاملMODELING THE STOCHASTIC BEHAVIOR OF THE FARS RIVERS
Historical records for rivers in Fars Province are inadequate in comparison with the design period of hydraulic structures. In this study, time series techniques are applied to the records of three Iranian rivers in the Fars Province in order to generate forecast values of the mean monthly river flows. The autoregressive models (AR), moving average models (MA) and autoregressive moving ave...
متن کاملCore Inflation and Trend Inflation June 2015
An important input to monetary policymaking is estimating the current level of inflation. This paper examines empirically whether the measurement of trend inflation can be improved by using disaggregated data on sectoral inflation to construct indexes akin to core inflation but with a time-varying distributed lags of weights, where the sectoral weight depends on the timevarying volatility and p...
متن کاملApplication of a Statistical Model to Forecast Drowning Deaths in Iran
Background/aim: One of the indicators for measuring the development of a country is its death rate caused by accidents and disasters. Every year, many people in Iran are drowned for various reasons. The aim of this study was to predict the trend of drowning mortality in Iran using statistical models. Method: This research was a longitudinal study using time-series data of drowning deaths obta...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015